FUNCTION SPACES VIII JULY 3 - 7, 2006

A converse to Fubini's theorem

Maciej Sablik Silesian University, Katowice

Abstract

Let Ω be a set, let \mathcal{M} be a sigma algebra of subsets of Ω and let μ be a nonnegative additive set function defined in \mathcal{M} . Further, let X be a normed space of measurable real functions defined in a set Ω , suppose that X contains characteristic functions of sets from \mathcal{M} and let $M: X \longrightarrow \mathbb{R}$ be a continuous and reflexive functional. Assume that M is strictly increasing i. e. Mf > Mg whenever $f \geqslant g$ and $\mu(\{f > g\}) > 0$. We prove that there exist a positive additive set function P and a strictly increasing continuous function $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ such that $(P(A) > 0 \iff \mu(A) > 0)$ and $Mf = \varphi^{-1}(\int_{\Omega} \varphi \circ f dP)$ if and only if for every function $x: \Omega \times \Omega \longrightarrow \mathbb{R}$ such that $x(s,\cdot)$ and $x(\cdot,t)$ belong to X, as well as $M_{[t]}x:="s \to Mx(s,\cdot)"$ and $M_{[s]}x:="t \to Mx(\cdot,t)"$, we have

$$M\left(M_{[s]}x\right) = M\left(M_{[t]}x\right).$$