ON CHAOTIC MAPS IN BI-INFINITE SYMBOL SPACE

Irita Rumbeniece and Inese Bula

Department of Methematics, University of Latvia
Rainis boulv. 19, Rīga, LV-1586, LATVIA
navita@one.lv and ibula@lanet.lv

Dynamical systems originally arose in the study of systems of differential equations used to model physical phenomena. The technique of characterizing the orbit structure of a dynamical system via infinite sequences of "symbols" (in our case "0" and "1") is known as $symbolic\ dynamics$. Well known is shift map, which is a chaotic map in symbolic space. But there exist other chaotic maps in symbol space as well. We consider some continious mappings and show that they are chaotic.

Definition 1 The set of all bi-infinite sequences of 0s and 1s is called a sequence space of 0 and 1 or the $symbolic\ space$ of 0 and 1, i.e.,

$$\Sigma = \{ \ ...s_{-2}s_{-1}.s_0s_1s_2... \ | s_i = 0 \ \text{or} \ s_i = 1 \ \text{for every} \ i \in \mathbf{Z} \}.$$

We use following definition of R.Devaney ([1]). Let (X, ρ) be metric space.

Definition 2 ([1]): The function $f: X \to X$ is *chaotic* if

- a) the periodic points of f are dense in X,
- b) f is topologically transitive,
- c) f exhibits sensitive dependence on initial conditions.

Definition 3 The map $\alpha: \Sigma \to \Sigma$ is called an α -map if

$$\forall s = ...s_{-2}s_{-1}.s_0s_1s_2... \in \Sigma : \alpha(s) = ...s_{-n}...s_{-3}s_{-2}.s_1s_2...s_n...$$

Definition 4 The map $\alpha_{mk}: \Sigma \to \Sigma$ $(m, k \in \mathbb{N})$ is called a α_{mk} -map if

$$\forall s = ... s_{-2} s_{-1} . s_0 s_1 s_2 ... \in \Sigma : \quad \alpha_{mk}(s) = ... s_{-(m+2)} s_{-(m+1)} . s_k s_{k+1}$$

Definition 5 The map $\beta: \Sigma \to \Sigma$ is called a β -map if

$$\forall \ s = ... s_{-2} s_{-1} . s_0 s_1 s_2 ... \in \Sigma : \quad \beta(s) = ... s_{-n} ... s_{-5} s_{-4} s_{-2} . s_1 s_3 s_4 ... s_n ...$$

Theorem 1 The α-map, α_{mk} -map and β-map are chaotic in symbol space Σ.

Definition 6 The map $\gamma: \Sigma \to \Sigma$ is called a γ -map if

$$\forall s = ...s_{-2}s_{-1}.s_0s_1s_2... \in \Sigma : \quad \gamma(s) = ...s_{-n}...s_{-3}s_{-2}s_{-1}.s_1s_2s_3...s_n...$$

Theorem 2 γ -map and $\overline{\gamma}$ -map is not chaotic in symbol space Σ .

References

[1] R.Devaney, An introduction to chaotic dynamical systems. Benjamin\Cummings: Menlo Park, CA, 1986.