Dariusz Pączka Szczecin University of Technology Institute of Mathematics

C–subgradients for locally Lipschitz integral functionals on non- L_p -type spaces of measurable functions

Let (Ω, μ) be a measure space, E be an arbitrary separable Banach space, $E_{\omega^*}^*$ be the dual equipped with the weak* topology, and $g: \Omega \times E \to \mathbb{R}$ be a Carathéodory function which is Lipschitz continuous on each ball of E for almost all $s \in \Omega$. Put $G(x) \stackrel{\text{def}}{=} \int_{\Omega} g(s, x(s)) d\mu(s)$. Consider the integral functional G defined on some non- L_p -type Banach space X of measurable functions $x: \Omega \to E$. We present several general theorems on sufficient conditions under which any element $\gamma \in X^*$ of Clarke's generalized gradient (multivalued C-subgradient) $\partial G(x)$ has the representation $\gamma(v) = \int_{\Omega} \langle \zeta(s), v(s) \rangle d\mu(s) \ (v \in X)$ via some measurable function $\zeta: \Omega \to E_{w^*}^*$ of the associate space X' such that $\zeta(s) \in \partial_u g(s, x(s))$ for almost all $s \in \Omega$. Here, given a fixed $s \in \Omega$, $\partial_u g(s, u_0)$ denotes Clarke's generalized gradient for the function $g(s,\cdot)$ at $u_0 \in E$. What concerning X, we suppose that it is either a so-called "non-solid" Banach M-space (in particular, "non-solid" generalized Orlicz space) or Köthe–Bochner space ("solid" space).