Approximative compactness and continuity of metric projection in Banach spaces

Wojciech Kowalewski

If $(X, \|\cdot\|)$ is a Banach space and A is nonempty subset of X we define the metric projection P_A from X onto A by

$$P_A(x) = \{ y \in X : ||x - y|| = dist(x, A) \},\$$

where $dist(x,A) = \inf\{\|x-z\| : z \in A\}$. It is known that if X is approximatively compact (which means that any nonempty closed and convex set A in X is approximatively compact, that is for any $\{x_n\} \subset A$ and any $y \in X$ such that $\|x_n - y\| \to dist(y,A)$ we have that $\{x_n\}$ is a Cauchy subsequence), then for any nonempty closed and convex set A in X, $P_A(x) \neq \emptyset$ for any $x \in X$ and P_A continuous on X.

We prove that if X is midpoint locally uniformly rotund, then for any nonempty closed and conex set A in X, approximative compactness is also necessary for continuity of the metric projection $P_A(\cdot)$ on X (thanks midpoint local uniform rotundity, $P_A(x)$ is a singleton for any $x \in X$).

The result presented here is from my joint paper with H. Hudzik, Y. Wang and M. Wisła.