Convexity, compactness and distances

Antonio S. Granero

Our starting point is the following extension of the Krein-Šmulian Theorem: if X is a Banach space, $Z \subset X$ a convex subset of X and $K \subset X^{**}$ a w^* -compact subset, then $d(\overline{\operatorname{co}}^{w^*}(K), Z) \leq 5d(K, Z)$ and, if $Z \cap K$ is w^* -dense in K, then $d(\overline{\operatorname{co}}^{w^*}(K), Z) \leq 2d(K, Z)$. Moreover, there exist a Banach space X and two w^* -compact subsets $K_1, K_2 \subset X^{**}$ such that: (1) $K_1 \cap X$ is w^* -dense in $K_1, d(K_1, X) = \frac{1}{2}$ and $d(\overline{\operatorname{co}}^{w^*}(K_1), X) = 1$; (ii) $d(K_2, X) = \frac{1}{3}$ and $d(\overline{\operatorname{co}}^{w^*}(K_2), X) = 1$. So, the best universal constant M of the extension of the Krein-Šmulian Theorem satisfies $3 \leq M \leq 5$. For the category of w^* -compact subsets $K \subset X^{**}$ such that $X \cap K$ is w^* -dense in K, the best constant M is exactly M = 2.

In a dual Banach space X^* it can be studied when the distances $d(\overline{\operatorname{co}}^{w^*}(K), Y)$ are M-controlled by the distances d(K, Y) (that is, if $d(\overline{\operatorname{co}}^{w^*}(K), Y) \leq Md(K, Y)$ for some $1 \leq M < \infty$), Y being a subspace of a dual Banach space X^* and K a w*-compact subset of X^* . We characterize the Banach spaces Y that have universally control (that is, Y has control (in fact 3-control) inside every dual Banach space X^* that contains Y as a subspace) and the class of w*compact subsets $K \subset X^*$ such that $\overline{\operatorname{co}}(K) = \overline{\operatorname{co}}^{w^*}(K)$.

The dual space $\ell_{\infty}(H)$ is interesting in order to to investigate the control of some of its subspaces Z. We study some special cases, namely: (1) $Z = C^*(H)$ when H is a topological space (metrizable, first axiom, compact, etc.); (2) Z is the subspace $B_{1b}(H)$ of bounded functions of the first Baire class on H, H being a metric space.

References

- M. Fabian, P. Hájek, V. Montesinos and W. Zizler, A quantitative version of Krein's Theorem, Rev. Mat. Iberoam., 21(1) (2005), 237-248.
- [2] A. S. Granero, An extension of the Krein-Smulian Theorem, Rev. Mat. Iberoam., 22(1) (2006), 93-110.
- [3] A. S. Granero, P. Hájek and V. Montesinos, Convexity and w*-compactness in Banach spaces, Math. Ann., 328 (2004), 625-631.
- [4] A. S. Granero and M. Sánchez, Convexity, compactness and distances, in Methods in Banach spaces, Ed. J. M. F. Castillo and W. B. Johnson, Lecture Notes Series, London Math. Soc., to appear.
- [5] A. S. Granero and M. Sánchez, The class of universally Krein-Šmulian Banach spaces, to appear.