Isometric Decomposition Function Spaces and Applications to Nonlinear Evolution Equations¹

Wang Baoxiang²

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China.

Abstract. Let $Q_0 = \{\xi \in \mathbb{R}^n : \xi_i \in [-1/2, 1/2), i = 1, ..., n\}$ and $Q_k = k + Q_0$, $k \in \mathbb{Z}^n$. It is easy to see that $\{Q_k\}_{k \in \mathbb{Z}^n}$ consists in a unit-cube decomposition of \mathbb{R}^n . Let $\mathscr{F}(\mathscr{F}^{-1})$ be the (inverse) Fourier transform and χ_{Q_k} be the characteristic function on χ_{Q_k} . Denote $\square_k \sim \mathcal{F}^{-1}\chi_{Q_k}\mathscr{F}, k \in \mathbb{Z}^n$, which are said to be the isometric decomposition operators. According to the isometric decomposition operators, we introduce a new class of function spaces $E_{p,q}^{\lambda}$ and $E_{s,p,q}$. For any $\lambda > 0, s \in \mathbb{R}$, $0 < p, q \leqslant \infty$, we write $\langle k \rangle = 1 + |k|$ and

$$||f||_{E_{s,p,q}} = \left(\sum_{k \in \mathbb{Z}^n} 2^{\lambda q|k|} ||\Box_k f||_{L^p}^q\right)^{1/q};$$
$$||f||_{E_{s,p,q}} = \left(\sum_{k \in \mathbb{Z}^n} \langle k \rangle^{sq} ||\Box_k f||_{L^p}^q\right)^{1/q}.$$

Applying these function spaces, we study the Cauchy problem for the nonlinear Schrödinger equation, the nonlinear Klein-Gordon equation and the Navier-Stokes equation. Some local and global well posedness results are obtained for the Cauchy data in the rough spaces $E_{0,2,1}$. In particular, we will obtain the Gevrey class regularity for the solutions of the Navier-Stokes equations.

¹This is a joint work with Professors B. Guo and H. Hudzik and L. Zhao.

²Email: wbx@math.pku.edu.cn